学術論文

2024年

 

2023年

49. Miwa A, Maharjan AK,  Nishida K, Mori K, Toyama T. Characterization of Laboratory-scale Tidal Flow Constructed Wetlands in the Removal of Organic Carbon and Nitrogen from Sewage, Journal of Water and Environment Technology, 21: 180-189, 2023. https://doi.org/10.2965/jwet.22-116

2022年

48. Nakano M, Nozawa F, Kamei T, Kazama F, Toyama T. Dropping method for partial nitrification of synthetic ammonium-contaminated groundwater, Japanese Journal of Water Treatment Biology, 58: 45-53, 2022. https://doi.org/10.2521/jswtb.58.45

47. Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. Bioresource Technology, 344: 126324, 2022. https://doi.org/10.1016/j.biortech.2021.126324

46. Toyama T, Mori K, Tanaka Y, Ike M, and Morikawa M. Growth promotion of giant duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 through enhancement of nitrogen metabolism and photosynthesis. Molecular Plant-Microbe Interactions, 33: 28-38, 2022. https://doi.org/10.1094/MPMI-06-21-0157-R

2021年

45. Maharjan A K, Mori K, Nishida K, and Toyama T. Nitrogen removal from ammonium-contaminated groundwater using dropping nitrification–cotton-based denitrification reactor. Water Supply, In press, 2021. https://doi.org/10.2166/ws.2021.258

44. Rubiyatno, Mori K, Inoue D, Kim S, Yu J, Lee T, Ike M, and Toyama T. Isolation and characterization of Euglena gracilis-associated bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, capable of promoting the growth and paramylon production of E. gracilis under mixotrophic cultivation. Microorganisms, 9: 1496, 2021. https://doi.org/10.3390/microorganisms9071496

43. Rubiyatno, Matsui T, Mori K, and Toyama T. Paramylon production by Euglena gracilis via mixotrophic cultivation using sewage effluent and waste organic compounds. Bioresource Technology Reports, 15: 100735, 2021. https://doi.org/10.1016/j.biteb.2021.100735

42. Yoneda Y, Yamamoto K, Makino A, Tanaka Y, Meng X-Y, Hashimoto J, Shin-ya K, Satoh N, Fujie M, Toyama T, Mori K, Ike M, Morikawa M, Kamagata Y, and Tamaki H. Novel Plant-associated Acidobacteria promotes growth of common floating aquatic plants, duckweeds. Microorganisms, 9: 1133, 2021. https://doi.org/10.3390/microorganisms9061133

41. Nakano M, Kamei T, Shakya BM, Nakamura T, Tanaka Y, Haramoto E, Toyama T, and Kazama F. Distribution and community composition of anammox bacteria in shallow groundwater of the Kathmandu Valley, Nepal. Microbes and Environments, 36: ME20143, 2021. https://doi.org/10.1264/jsme2.ME20143

40. Iwashita T, Tanaka T, Tamaki H, Nakai R, Yoneda Y, Makino A, Toyama T, Kamagata Y, Morikawa M, Mori K. Isolation and characterization of novel plant growth-promoting bacteria from the fronds of duckweed, Japanese Journal of Water Treatment Biology, 57: 1-9, 2021. https://doi.org/10.2521/jswtb.57.1

2020年

39. Hang LT, Mori K, Toyama T. Enhanced biomass and lipid production capacity of Chlamydomonas reinhardtii under mixotrophic cultivation using sewage effluent and waste molasses, Japanese Journal of Water Treatment Biology, 56: 57-66, 2020. https://doi.org/10.2521/jswtb.56.57

38. Maharjan AK, Mori K, Toyama T. Nitrogen removal ability and characteristics of the laboratory-scale tidal flow constructed wetlands for treating ammonium-nitrogen contaminated groundwater, Water, 12: 1326, 2020. https://doi.org/10.3390/w12051326

37. Hang LT, Mori K, Tanaka Y, Morikawa M, Toyama T. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses, Bioprocess and Biosystems Engineering, 43: 971-980, 2020. https://doi.org/10.1007/s00449-020-02293-w

36. Khairina Y, Jog R, Boonmak C, Toyama T, Oyama T, Morikawa M. Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site, Chemosphere, 268: 129247, 2020. https://doi.org/10.1016/j.chemosphere.2020.129247

35. Iwashita T, Tanaka Y, Tamaki H, Yoneda Y, Makino A, Tateno Y, Li Y, Toyama T, Kamagata Y, Mori K. Comparative analysis of microbial communities in fronds and roots of three duckweed species: Spirodela polyrhiza, Lemna minor, and Lemna aequinoctialis, Microbes and Environments, 35: ME20081, 2020. https://doi.org/10.1264/jsme2.ME20081

2019年

34. Ishizawa H, Ogata Y, Hachiya Y, Tokura K, Kuroda M, Inoue D, Toyama T, Tanaka Y, Mori K, Morikawa M, Ike M. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, Chemosphere, 238: 124682, 2020. https://doi.org/10.1016/j.chemosphere.2019.124682

33. Toyama T, Hanaoka T, Yamada K, Suzuki K, Tanaka Y, Morikawa M, Mori K. Enhanced production of biomass and lipids by Euglena gracilis via co‑culturing with a microalga growth‑promoting bacterium, Emticicia sp. EG3, Biotechnology for Biofuels, 12: 205, 2019. https://doi.org/10.1186/s13068-019-1544-2

2018年

32. Tanaka Y, Tamaki H, Tanaka K, Tozawa E, Matsuzawa H, Toyama T, Kamagata Y, Mori K. “Duckweed-microbe co-cultivation method” for isolating a wide variety of microbes including taxonomically novel microbes, Microbes and Environments, 33: 402-406, 2018. https://doi.org/10.1264/jsme2.ME18067

31. Toyama T, Kasuya M, Hanaoka T, Kobayashi N, Tanaka Y, Inoue D, Sei K, Morikawa M, Mori K. Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent, Biotechnology for Biofuels, 11: 174, 2018. https://doi.org/10.1186/s13068-018-1174-0

30. Toyama T, Hanaoka T, Tanaka Y, Morikawa M, Mori K. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent, Bioresource Technology, 250: 464-473, 2018. https://doi.org/10.1016/j.biortech.2017.11.054

29. Wirasnita R, Mori K, Toyama T. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands, Chemosphere, 210: 717-725, 2018. https://doi.org/10.1016/j.chemosphere.2018.07.060

2017年

28. Tanaka Y, Matsuzawa H, Tamaki H, Tagawa M, Toyama T, Kamagata Y, Mori K. Isolation of novel bacteria including rarely cultivated phyla, Acidobacteria and Verrucomicrobia, from the roots of emergent plants by simple culturing method, Microbes and Environments, 32: 288-292, 2017. https://doi.org/10.1264/jsme2.ME17027

27. Toyama T, Kuroda M, Ogata Y, Hachiya Y, Quach A, Tokura K, Tanaka Y, Mori K, Morikawa M. Ike M. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters, Water Science and Technology, 76: 1418-1428, 2017. https://doi.org/10.2166/wst.2017.296

26. Pham TH, Toyama T, Mori K. Removal or tetracycline and tetracycline resistance genes from municipal wastewater in microcosm fill-and-drain constructed wetlands, Japanese Journal of Water Treatment Biology, 53: 11-21, 2017. https://doi.org/10.2521/jswtb.53.11

2016年以前
  1. Toyama T, Nishimura N, Ogata Y, Sei K, Mori K, Ike M. Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments, Environmental Technology, 37: 478-485, 2016. https://doi.org/10.1080/09593330.2015.1074156
  2. Li Y, Toyama T, Tanaka Y, Tang Y, Wu X, Mori K. Effects of various duckweed species on phenol degradation in environmental waters, Japanese Journal of Water Treatment Biology, 50: 95-103, 2014. https://doi.org/10.2521/jswtb.50.95
  3. Kristanti RA, Toyama T, Habiharata T, Tanaka Y, Mori K. Sustainable removal of nitrophenols by rhizoremediation using four strains of bacteria and giant duckweed (Spirodela polyrhiza), Water, Air and Soil Pollution, 225: 1-10, 2014. https://doi.org/10.1007/s11270-014-1928-7
  4. Kristanti RA, Toyama T, Habiharata T, Tanaka Y, Mori K. Bioaugmentation involving a bacterial consortium isolated from the rhizosphere of Spirodela polyrhiza for treating water contaminated with a mixture of four nitrophenol isomers, RSC Advances, 4: 1616-1621, 2014. DOI https://doi.org/10.1039/C3RA44892D
  5. Li Y, Toyama T, Furuya T, Iwanaga K, Tanakaka Y, Mori K. Sustainable biodegradation of bisphenol A by Spirodela polyrhiza and Novosphingobium sp. FID3 association, Journal of Water Environment Technology, 12: 43-54, 2014. https://doi.org/10.2965/jwet.2014.43
  6. Toyama T, Ojima T, Tanaka Y, Mori K, Morikawa M. Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association, Water Science and Technology, 68: 522-529, 2013. https://doi.org/10.2166/wst.2013.234
  7. Ogata Y, Toyama T, Yu N, Wang X, Sei K, Ike M. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrhiza and isolation of a 4-t-BP-utilizing bacterium, Biodegradation, 24: 191-202, 2013. https://doi.org/10.1007/s10532-012-9570-9
  8. Ogata Y, Goda S, Toyama T, Sei K, Ike M. The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway, Environmental Science and Technology, 47: 1017-1023, 2013. https://doi.org/10.1021/es303726h
  9. Kristanti RA, Kanbe M, Toyama T, Tanaka Y, Tang YQ, Wu X, Mori K. Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza, Journal of Environmental Science, 24: 800-807, 2012. https://doi.org/10.1016/S1001-0742(11)60839-5
  10. Kristanti RA, Kanbe M, Hadibarata T, Toyama T, Tanaka Y, Mori K. Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza, Environmental science and pollution research international, 19: 1852-1858, 2012. https://doi.org/10.1007/s11356-012-0836-x
  11. Toyama T, Kainuma Y, Kikuchi S, Mori K. Biodegradation of bisphenol A and 4-alkylphenols by Novosphingobium sp. strain TYA-1 and its potential for treatment of polluted water, Water Science and Technology, 66: 2202-2208, 2012. https://doi.org/10.2166/wst.2012.453
  12. Toyama T, Kristanti RA, Tanaka Y, Mori K. Biodegradation of 4-n-butylphenol in Phragmites australis rhizosphere by interactions between roots and bacteria, Journal of Water Environment Technology, 9: 411-422, 2011. https://doi.org/10.2965/jwet.2011.411
  13. Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y, Ike M, Mori K. Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria, Environmental Science and Technology, 45: 6524-6530, 2011. https://doi.org/10.1021/es201061a
  14. Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M. Accelerated biodegradation of pyrene and benzo[a]pyrene in Phragmites australis rhizosphere by bacteria-root exudate interactions, Water Research, 45: 1629-1638, 2011. https://doi.org/10.1016/j.watres.2010.11.044
  15. Toyama T, Momotani N, Ogata Y, Miyamori Y, Inoue D, Sei K, Mori K, Kikuchi S, Ike M. Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment, Applied and Environmental Microbiology, 76: 6733-40-6740, 2010. https://doi.org/10.1128/AEM.00258-10
  16. Toyama T, Kumada H, Sei K, Mori K, Fujita M, Ike M. Long-term performance and community analysis of Spirodela polyrhiza-bacteria association treating phenol-contaminated water, Journal of Water Environment Technology, 8: 239-250, 2010. https://doi.org/10.2965/jwet.2010.239
  17. Hai H, Yu N, Toyama T, Inoue D, Sei K, Ike M. Accelerated degradation of a variety of aromatic compounds by Spirodela polyrhiza-bacterial associations and contribution of root exudates released from S. polyrhiza, Journal of Environmental Sciences, 22: 494-499, 2010. https://doi.org/10.1016/S1001-0742(09)60135-2
  18. Toyama T, Maeda N, Murashita M, Chang YC, Kikuchi S. Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1, Biodegradation, 21: 157-165, 2010. https://doi.org/10.1007/s10532-009-9290-y
  19. 池道彦, 井上大介, 遠山忠, 松永祐紀, 桃谷尚憲, Hoang Hai, 清和成, 惣田訓, ウキクサ根圏におけるノニルフェノールの微生物分解-分解菌の分離とその特徴-, 環境技術, 38: 633-641, 2009. https://doi.org/10.5956/jriet.38.633
  20. Toyama T, Sei K, Yu N, Kumada H, Inoue D, Hai H, Soda S, Chang YC, Kikuchi S, Fujita M, Ike M. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrhiza: A mechanism of accelerated biodegradation of phenol, Water Research, 43: 3765-3776, 2009. https://doi.org/10.1016/j.watres.2009.05.045
  21. Hai H, Inoue D, Momotani N, Yu N, Toyama T, Sei K, Ike M. Characterization of novel 4-n-butylphenol-degrading Pseudomonas veronii strains isolated from rhizosphere of giant duckweed, Spirodela polyrhiza, Japanese Journal of Water Treatment Biology, 45: 83-92, 2009. https://doi.org/10.2521/jswtb.45.83
  22. Toyama T, Sato Y, Inoue D, Sei K, Chang YC, Kikuchi S, Ike M. Biodegradation of bisphenol A and bisphenol F in the rhizosphere sediment of Phragmites australis, Journal of Bioscience and Bioengineering, 108: 147-150, 2009. https://doi.org/10.1016/j.jbiosc.2009.03.011
  23. Toyama T, Yu N, Kumada H, Sei K, Ike M, Fujita M, Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrhiza and bacteria in its rhizosphere, Journal of Bioscience and Bioengineering, 101: 346-353, 2006. https://doi.org/10.1263/jbb.101.346
  24. 遠山忠, 吉仲賢晴, 清和成, 池道彦, 藤田正憲, ボタンウキクサと根圏微生物の相互作用を利用した芳香族化合物の分解促進, 環境工学研究論文集, 42: 475-486, 2005. https://doi.org/10.11532/proes1992.42.475
  25. Mori K, Toyama T, Sei K. Surfactants degrading activities in the rhizosphere of giant duckweed (Spirodela polyrhiza), Japanese Journal of Water Treatment Biology, 41: 129-140, 2005. https://doi.org/10.2521/jswtb.41.129